
1

CSC 128
TOPIC 4: REPETITION CONTROL

STRUCTURE

By : MOHD SAIFULNIZAM ABU BAKAR

4– 2

Learning Outcomes

At the end of this chapter, you should be able to:

❑ Differentiate between the three types of repetition

control structure.

❑ Differentiate between counter-controlled structure,

sentinel-controlled structure, and flag-controlled

structure.

❑ Produce programs using repetition control structure.

4– 3

❑ Before an algorithm is created, the three types of control

structure should be understood first.

❑ A control structure is a pattern to control the flow of a

program module.

Control structure

4– 4

❑ There are three types of repetition control structure, and each of

them can be written in another way as a set of instructions using

sequential control structure and selection control structure.

❑ The three types of repetition in C++ are the while loop, the

do...while loop and the for loop.

❑ These three types of statements are controlled by a control loop or

Boolean test.

Introduction

4– 5

Requirements of Loop Control

Variable (LCV) and Loop Condition

(LC)

❑ Loop control variable (LCV) is a variable that is used to

control the loop body, its initialization and execution.

❑ If the value loop control variable is not initialized, the program

will assume any value.

❑ Repetition/iteration or loop is a control structure that allows a

statement or group of statements to be executed repeatedly

based on the Boolean test or loop condition.

❑ In order to write a program using repetition, three operations

are needed—initialization, evaluation and updating.

❑ These three operations are required to make sure the

program is repeated as we want it to, and to avoid an infinite

loop.

4– 6

6

❑ process of giving a variable an

initial value

1. INITIALIZATION

❑ verify how many loops will be

done.

2. EVALUATION

❑ update the initial value, followed by an
increase or decrease in the value, until
the ending value is reached.

3. UPDATING

3 OPERATION

4– 7

Operations: Initialization,

Evaluation, Updating

❑ The first operation is initialization of the loop control variable

(LCV).

❑ Initialization is the process of giving a variable an initial value.

An initial value is important in the process of looping to count

or sum the variable.

❑ Note that the initialization is the first value that will be

evaluated. If the value is true, the loop will repeat the

statement.

❑ Example: count = 0, start = 1, x = 10.

4– 8

❑ The second operation is evaluation. It is used to verify how

many loops will be done.

❑ For example: count <= 10, start < 30, x > 0.

❑ The program starts by testing the Boolean test.

❑ If the result of the Boolean test is true, the entire loop body is

executed.

❑ Then, the process will be repeated as long as the condition is

true.

❑ If the result of the Boolean test is false, the loop body will not

be executed.

❑ The value true means run the loop body again and the value

false means quit the loop.

Operations: Initialization,

Evaluation, Updating (cont.)

4– 9

❑ The third operation is updating.

❑ It is used to update the initial value, followed by an increase or

decrease in the value, until the ending value is reached.

❑ For example: count++, start--, x+=5.

Operations: Initialization,

Evaluation, Updating (cont.)

4– 10

Repetition/Looping Control

Structure

❑ There are three types of looping control in C++—counter-controlled

structure, sentinel-controlled structure and flag-controlled structure.

1. A counter-controlled structure is a loop where we know how

many times it will be executed.

2. A sentinel-controlled structure does not know how much data is

to be read because it will be based on the value entered by the

user.

3. A flag-controlled structure uses a bool (data type for true or

false) variable to control the loop.

4– 11

Repetition Using while Statement

❑ A while loop does not necessarily iterate a specified number of

times. As long as its condition is true, a while loop will continue to

iterate.

❑ A while loop is considered to be an indeterminate or indefinite

loop because the number of times it will iterate can only be

determined at run time.

❑ A while loop is also considered to be a top checking (pre-test)

loop, since the control expression is located on the first line of code
with the while keyword.

❑ If the control expression initially yields false, the loop will not iterate

even once. If the condition is false, the loop is skipped. If the

condition is true, the loop body is executed, and we then go back to

testing the condition.

4– 12

❑ The while statement has the form:

Repetition Using while Statement

(cont.)

TOP CHECK

(PRE TEST)

4– 13

Repetition Using while Statement

(cont.)

TOP CHECK

4– 14

Initialization Evaluation Updating

i while (i<=10) cout<<

I LOVE C++ \n

i++

(i = i+ 1)

1 (1<=10) TRUE I LOVE C++ 2 = 1 + 1

2 (2<=10) TRUE I LOVE C++ 3 = 2 + 1

3 (3<=10) TRUE I LOVE C++ 4= 3+1

4 (4<=10) TRUE I LOVE C++ 5 = 4 + 1

… …. …. ….

10 (10<=10) TRUE I LOVE C++ 11=10+1

11 (11<=10)

FALSE

counter-controlled structure

4– 15

❑ Consider the following segment of code. What will be displayed?

Repetition Using while Statement

(cont.)

value++;

TOP CHECK

Initialization Evaluation Updating

value total while
(value<=3)

total=total+value value++
(value=value+1)

1 0 TRUE 1 = 0+1 2 = 1+1

2 1 TRUE 3 = 1+2 3 = 2+1

3 3 TRUE 6 = 3 + 3 4 = 3+1

4 6 (4<=3)
FALSE

counter-controlled structure

4– 17

❑ Tracing the output of the program in Example 4.3

Repetition Using while Statement

(cont.)

4– 18

Repetition Using while Statement

(cont.)

❑ In Example 4.4, a

program is written

to calculate the

total price of items

purchased.

❑ The program

should ask for the

quantity of items,

item names and

the price for each

item.

counter-controlled structure

4– 19

#include<iostream>

using namespace std;

int main()

{

int sentinel=-999;

int num,sum=0,count=0;

cout<<"Enter a number ending with:"<<sentinel<<endl;

cin>>num;

while(num!=sentinel)

{

sum = sum + num;

count++;

cin>>num;

}

cout<<"The sum of "<<count<<" numbers is "<<sum<<endl;

return 0;

}

Repetition Using while Statement

(cont.)

TOP CHECK

sentinel-controlled structure

Initialization Evaluation Updating

sentinel num while
(num!=sentinel)

Sum = sum + num Count++
(count=count + 1)

Cin>>
num

-999 23 23!=-999 TRUE 23 = 0 + 23 1 = 0+1 12

-999 12 12!=-999 TRUE 35 = 23 + 12 2=1 + 1 56

-999 56 56!=-999 TRUE 91 = 35 + 56 3 =2+ 1 -999

-999 -999 -999!=-999 FALSE

int sentinel=-999;

int num,sum=0,count=0;

The sum of 3 number is 91

4– 21

Repetition Using while Statement

(cont.)

flag-controlled structureTOP CHECK

4– 22

❑ A do. . .while statement is similar to the while loop, except

that the evaluation operation occurs at the end of the loop.

❑ It is guaranteed that a do. . .while loop will iterate at least

once because its condition is placed at the end of the loop.

❑ A do. . . while loop is considered to be a bottom-checking

(posttest) loop, since the control expression is located after the
body of the loop after the while keyword.

❑ A do. . .while loop is guaranteed to iterate at least once even

if the condition evaluated yields false.

❑ It is useful for tasks that need to be executed once before a test is

made to continue, such as a test that is dependent upon the results

of the loop.

Repetition Using do…while

Statement

4– 23

❑ The do. . .while statement has the form:

Repetition Using do…while

Statement (cont.)

BOTTOM-CHECKING

(POSTTEST)

4– 24

Repetition Using do…while

Statement (cont.)

BOTTOM-CHECKING

(POSTTEST)

Initialization Updating Evaluation

i cout<<
(I’m a good student)

i++
(i = i+ 1)

while (i<=10)

1 I’m a good student 2 = 1 + 1 (2<=10) TRUE

2 I’m a good student 3 = 2 + 1 (3<=10) TRUE

3 I’m a good student 4= 3+1 (4<=10) TRUE

4 I’m a good student 5 = 4 + 1 (5<=10) TRUE

… …. …. ….

9 I’m a good student 10=9+1 (10<=10) TRUE

10 I’m a good student 11=10+1 (11<=10)
FALSE

counter-controlled structure

4– 26

Repetition Using do…while

Statement (cont.)

BOTTOM-CHECKING

(POSTTEST)

Initialization Updating Evaluation

i cout<<
(I’m a good student)

i++
(i = i+ 1)

while (i>=10)

1 I’m a good student 2 = 1 + 1 (2>=10)
FALSE

counter-controlled structure

4– 28

Repetition Using do…while

Statement (cont.)

4– 29

Repetition Using for Statement

❑ The for loop is a loop that will repeatedly execute a block of

statements a fixed number of times.

❑ This type of loop is used when we know the number of times to

repeat the statement.

❑ When we have a group of statements to repeat, enclose them with

curly braces.

❑ The general form is as follows:

counter-controlled structure

4– 30

Repetition Using for Statement

(cont.)

STEP 1 : INITIALIZATION

STEP 2 EVALUATION

STEP 3 EXECUTE

STEP 4 UPDATING

4– 32

Repetition Using for Statement

(cont.)

Initialization Evaluation Execute Updating

i=0 (i<=10) cout<<i; i+=2
(i=i+2)

0 TRUE 0 2 = 0+2

2 TRUE 2 4 = 2 + 2

4 TRUE 4 6 = 4 + 2

6 TRUE 6 8 = 6 + 2

8 TRUE 8 10 = 8 + 2

10 TRUE 10 12 = 10+2

12 (12<=10)
FALSE

counter-

controlled

structure

4– 34

Repetition Using for Statement

(cont.)

Initialization Evaluation Execute Updating

i=10 (i>0) cout<<i” “; i--
(i=i-1)

10 TRUE 10 9 = 10 - 1

9 TRUE 9 8 = 9 - 1

8 TRUE 8 7 = 8 - 1

7 TRUE 7 6 = 7 - 1

… … … ….

1 TRUE 1 0 = 1-1

0 (0<0)
FALSE

counter-

controlled

structure

4– 36

Repetition Using for Statement

(cont.)

Initialization Evaluation Execute Updating

j=1 =7
(j<=7)

result=pow(j,2) cout<<j”\t\t
“result;

j++
(j=j+1)

1 1<=7 TRUE 1 = pow(1,2) 1 1 2 = 1 + 1

2 2<=7 TRUE 4 = pow(2,2) 2 4 3 = 2 + 1

3 3<=7 TRUE 9 = pow(3,2) 3 9 4 = 3 + 1

4 4<=7 TRUE 16 = pow(4,2) 4 16 5 = 4+1

..

7 7<=7 TRUE 49 = pow(7,2) 7 49 8 = 7+1

8 (8<=7)
FALSE

counter-

controlled

structure

4– 38

The Difference Between for, while

And do…while Loop

4– 39

Nested Loop

❑ The placing of one loop inside the body of another loop is called

nesting.

❑ When you “nest” two loops, the outer loop takes control of the

number of complete repetitions of the inner loop.

❑ While all types of loops may be nested, the most commonly nested
loops are for loops.

4– 40

Nested Loop (cont.)

4– 41

❑ Example 4.16 is a program to display a multiplication table.

Nested Loop (cont.)

4– 42

❑ Example 4.17 is a program written to calculate the average marks

of three tests for each student.

Nested Loop (cont.)

4– 43

Conclusion

❑ The repetition/looping control structure is important to repeat the

same group of statements.

❑ There are three looping control structures in C++—the while loop,

the do. . .while loop and the for loop.

❑ The difference between each of the three types of loop is how they

control the repetition.

❑ These three types of loop require a loop control variable (LCV) to

control the loop.

❑ There are three elements or operations needed in looping—

initialization LCV, Evaluation LCV and updating LCV.

❑ The loop control in looping structure can be divided into three

types—counter-controlled loop, sentinel-controlled loop and flag-

controlled loop.

4– 44

Conclusion

❑ The repetition/looping control structure is important to repeat the

same group of statements.

❑ There are three looping control structures in C++—the while loop,

the do. . .while loop and the for loop.

❑ The difference between each of the three types of loop is how they

control the repetition.

❑ These three types of loop require a loop control variable (LCV) to

control the loop.

❑ There are three elements or operations needed in looping—

initialization LCV, Evaluation LCV and updating LCV.

❑ The loop control in looping structure can be divided into three

types—counter-controlled loop, sentinel-controlled loop and flag-

controlled loop.

Investment

• Deposit RM1000 in bank saving

• Bank Dividend 10% each year on current balance

• How much money after 10 years ? With no
transaction happen.

Investment

• Deposit RM1000

• Dividend 10% each year on current balance

• How much money after 10 years?

Analysis - OPERATION

1. Initialization – money = 1000, year = 0

2. Evaluation – year<=10

3. Updating - money = money + dividend

- year++ (year=year+1)

Investment

double money=1000.00,div;

int year=0;

while (year<=10)

{

div=money*0.1;

money=money+div;

year++;

}

Initialization

Evaluation

Updating

counter-controlled structure

Investment

Initialization Evaluation Updating

money year while
(year<=10)

div=money*0.1 money=money
+div

year++
(year=year+1)

1000 0 TRUE 100 1100=1000+
100

1=0+1

1100 1 TRUE 110.00 1,210.00 2

1,210.00 2 TRUE 121.00 1,331.00 3

1,331.00 3 TRUE 133.09 1,464.10 4

1,464.10 4 TRUE 146.40 1,610.51 5

… … …. …. …. ….

2,357.95 10 TRUE 235.80 2,593.74 11

2,593.74 11 FALSE

